首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1230篇
  免费   147篇
  国内免费   147篇
  2023年   16篇
  2022年   20篇
  2021年   50篇
  2020年   50篇
  2019年   59篇
  2018年   77篇
  2017年   36篇
  2016年   55篇
  2015年   77篇
  2014年   79篇
  2013年   96篇
  2012年   94篇
  2011年   106篇
  2010年   61篇
  2009年   46篇
  2008年   59篇
  2007年   42篇
  2006年   52篇
  2005年   57篇
  2004年   47篇
  2003年   64篇
  2002年   50篇
  2001年   35篇
  2000年   31篇
  1999年   34篇
  1998年   29篇
  1997年   16篇
  1996年   6篇
  1995年   4篇
  1994年   9篇
  1993年   7篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   7篇
  1983年   2篇
  1982年   3篇
  1980年   2篇
  1978年   2篇
  1976年   2篇
  1972年   3篇
  1970年   2篇
  1969年   2篇
  1966年   1篇
  1965年   1篇
  1906年   1篇
排序方式: 共有1524条查询结果,搜索用时 15 毫秒
21.
22.
Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.  相似文献   
23.
Polyamines are small aliphatic amines found in almost all organisms, ranging from bacteria to plants and animals. In most plants, putrescine, the metabolic precursor for longer polyamines, such as spermidine and spermine, is produced from arginine, with either agmatine or ornithine as intermediates. Here we show that Arabidopsis thaliana(Arabidopsis) arginine decarboxylase 1(ADC1), one of the two known arginine decarboxylases in Arabidopsis, not only synthesizes agmatine from arginine, but also converts N~δ-acetylornithine to N-acetylputrescine. Phylogenetic analyses indicate that duplication and neofunctionalization of ADC1 and NATA1, the enzymes that synthesize N~δ-acetylornithine in Arabidopsis, co-occur in a small number of related species in the Brassicaceae. Unlike ADC2, which is localized in the chloroplasts, ADC1 is in the endoplasmic reticulum together with NATA1, an indication that these two enzymes have access to the same substrate pool. Together, these results are consistent with a model whereby NATA1 and ADC1 together provide a pathway for the synthesis of N-acetylputrescine in Arabidopsis.  相似文献   
24.
Microtubule actin cross‐linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3‐E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear. To study the function and mechanism of Macf1 in bone formation and osteogenic differentiation, we established osteoblast‐specific Osterix (Osx) promoter‐driven Macf1 conditional knockout mice (Macf1f/fOsx‐Cre). The Macf1f/fOsx‐Cre mice displayed delayed ossification and decreased bone mass. Morphological and mechanical studies showed deteriorated trabecular microarchitecture and impaired biomechanical strength of femur in Macf1f/fOsx‐Cre mice. In addition, the differentiation of primary osteoblasts isolated from calvaria was inhibited in Macf1f/fOsx‐Cre mice. Deficiency of Macf1 in primary osteoblasts inhibited the expression of osteogenic marker genes (Col1, Runx2 and Alp) and the number of mineralized nodules. Furthermore, deficiency of Macf1 attenuated Bmp2/Smad/Runx2 signalling in primary osteoblasts of Macf1f/fOsx‐Cre mice. Together, these results indicated that Macf1 plays a significant role in bone formation and osteoblast differentiation by regulating Bmp2/Smad/Runx2 pathway, suggesting that Macf1 might be a therapeutic target for bone disease.  相似文献   
25.
Electrocatalysis is the most important electrode reactions for many energy storage and conversion devices, which are considered a key part of the resolution of the energy crisis. Toward this end, design of efficient electrocatalysts is of critical significance. While extensive research has been extended to develop excellent electrocatalysts, the fundamental understanding of the relationship between the electronic and structural properties of electrocatalysts and the catalytic activity must remain a priority. In this review, the activity modulation of electrocatalysts by charge transfer effects, including intramolecular and intermolecular charge transfer, is systematically introduced. With suitable charge transfer modification, such as heteroatom doping, defect engineering, molecule functionalization, and heterojunctions, the electrocatalytic activity of carbon‐based electrocatalysts can be significantly boosted. The manipulation of the electronic structure of carbon‐based materials by charge transfer may serve as a fundamental mechanism for performance enhancement. After establishing an understanding of the relationship between catalytic activity and charge transfer, the opportunities and challenges for the design of electrocatalyst with charge transfer effects are discussed.  相似文献   
26.
目的:探讨核因子-κB(nuclear factor-κB,NF-κB)在幽门螺杆菌感染介导的胃癌发生发展中的作用。方法:选择2016年3月至2019年3月在本院诊治的胃部疾病患者110例,采用qPCR检测NF-κB相对表达情况,采用免疫印记法检测幽门螺杆菌(Helicobacter pylori,Hp)感染情况并进行相关性分析。结果:在110例患者中,病理诊断为胃癌9例(胃癌组)和良性胃部疾病101例(良性组,其中浅表性胃炎52例、萎缩性胃炎26例、不典型增生23例)。胃癌组的幽门螺杆菌感染率为88.9%,显著高于良性组的10.9%(P0.05)。胃癌组的NF-κB表达阳性率为77.8%,显著高于良性组的14.9%(P0.05)。在110例患者中,直线相关性分析显示幽门螺杆菌感染、NF-κB表达阳性与胃癌有显著正相关性(P0.05)。受试者工作特征曲线(receiver operating characteristic curve,ROC)显示幽门螺杆菌感染、NF-κB表达阳性鉴别诊断胃癌的曲线下面积分别为0.669和0.713。结论:NF-κB在胃癌中呈现高表达状况,也多伴随有幽门螺杆菌感染,两者存在显著相关性,共同介导胃癌的发生发展。  相似文献   
27.
Exosomes are membrane‐bound extracellular vesicles that are produced in the endosomal compartment of most mammalian cell types and then released. Exosomes are effective carriers for the intercellular material transfer of material that can influence a series of physiological and pathological processes in recipient cells. Among loaded cargoes, non‐coding RNAs (ncRNAs) vary for the exosome‐producing cell and its homeostatic state, and characterization of the biogenesis and secretion of exosomal ncRNAs and the functions of these ncRNAs in skeletal muscle myogenesis remain preliminary. In this review, we will describe what is currently known of exosome biogenesis, release and uptake of exosomal ncRNAs, as well as the varied functions of exosomal miRNAs in skeletal muscle myogenesis.  相似文献   
28.
Dissecting the genetic basis of intraspecific variations in life history traits is essential to understand their evolution, notably for potential biocontrol agents. Such variations are observed in the endoparasitoid Cotesia typhae (Hymenoptera: Braconidae), specialized on the pest Sesamia nonagrioides (Lepidoptera: Noctuidae). Previously, we identified two strains of C. typhae that differed significantly for life history traits on an allopatric host population. To investigate the genetic basis underlying these phenotypic differences, we used a quantitative trait locus (QTL) approach based on restriction site‐associated DNA markers. The characteristic of C. typhae reproduction allowed us generating sisters sharing almost the same genetic content, named clonal sibship. Crosses between individuals from the two strains were performed to generate F2 and F8 recombinant CSS. The genotypes of 181 clonal sibships were determined as well as the phenotypes of the corresponding 4,000 females. Informative markers were then used to build a high‐quality genetic map. These 465 markers spanned a total length of 1,300 cM and were organized in 10 linkage groups which corresponded to the number of C. typhae chromosomes. Three QTLs were detected for parasitism success and two for offspring number, while none were identified for sex ratio. The QTLs explained, respectively, 27.7% and 24.5% of the phenotypic variation observed. The gene content of the genomic intervals was investigated based on the genome of C. congregata and revealed 67 interesting candidates, as potentially involved in the studied traits, including components of the venom and of the symbiotic virus (bracovirus) shown to be necessary for parasitism success in related wasps.  相似文献   
29.
Having a comprehensive understanding of population structure, genetic differentiation and demographic history is important for the conservation and management of threatened species. High‐throughput sequencing (HTS) provides exciting opportunities to address a wide range of factors for conservation genetics. Here, we generated HTS data and identified 266,884 high‐quality single nucleotide polymorphisms from 82 individuals of Cupressus chengiana, to assess population genomics across the species' full range, comprising the Daduhe River (DDH), Minjiang River (MJR) and Bailongjiang River (BLJ) catchments in western China. admixture , principal components analysis and phylogenetic analyses indicated that each region contains a distinct lineage, with high levels of differentiation between them (DDH, MJR and BLJ lineages). MJR was newly distinguished compared to previous surveys, and evidence including coalescent simulations supported a hybrid origin of MJR during the Quaternary. Each of these three lineages should be recognized as an evolutionarily significant unit (ESU), due to isolation, differing genetic adaptations and different demographic history. Currently, each ESU faces distinct threats, and will require different conservation strategies. Our work shows that population genomic approaches using HTS can reconstruct the complex evolutionary history of threatened species in mountainous regions, and hence inform conservation efforts, and contribute to the understanding of high biodiversity in mountains.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号